Protective Relays
A special type of relay is one which monitors the current, voltage, frequency, or any other type of electric power measurement either from a generating source or to a load for the purpose of triggering a circuit breaker to open in the event of an abnormal condition. These relays are referred to in the electrical power industry as protective relays.
The "trip" coil can be energized by one or more protective relays, as well as by hand switches, connected to switch 125 Volt DC power. DC power is used because it allows for a battery bank to supply close/trip power to the breaker control circuits in the event of a complete (AC) power failure.
Protective relays can monitor large AC currents by means of current transformers (CT's), which encircle the current-carrying conductors exiting a large circuit breaker, transformer, generator, or other device. Current transformers step down the monitored current to a secondary (output) range of 0 to 5 amps AC to power the protective relay. The current relay uses this 0-5 amp signal to power its internal mechanism, closing a contact to switch 125 Volt DC power to the breaker's trip coil if the monitored current becomes excessive.
There are many types of protective relays, some with highly specialized functions. Not all monitor voltage or current, either. They all, however, share the common feature of outputting a contact closure signal which can be used to switch power to a breaker trip coil, close coil, or operator alarm panel. Most protective relay functions have been categorized into an ANSI standard number code. Here are a few examples from that code list:
ANSI protective relay designation numbers
12 = Over speed
24 = Over excitation
25 = Syncrocheck
27 = Bus/Line under voltage
32 = Reverse power (anti-motoring)
38 = Stator over temp (RTD)
39 = Bearing vibration
40 = Loss of excitation
46 = Negative sequence undercurrent (phase current imbalance)
47 = Negative sequence under voltage (phase voltage imbalance)
49 = Bearing over temp (RTD)
50 = Instantaneous overcurrent
51 = Time overcurrent
51V = Time overcurrent -- voltage restrained
55 = Power factor
59 = Bus over voltage
60FL = Voltage transformer fuse failure
67 = Phase/Ground directional current
79 = Auto recolse
81 = Bus over/under frequency
- REVIEW:
- Large electric circuit breakers do not contain within themselves the necessary mechanisms to automatically trip (open) in the event of overcurrent conditions. They must be "told" to trip by external devices.
- Protective relays are devices built to automatically trigger the actuation coils of large electric circuit breakers under certain conditions.